Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Infection ; 2022 Apr 29.
Article in English | MEDLINE | ID: covidwho-2234414

ABSTRACT

PURPOSE: Patients suffering from chronic kidney disease (CKD) are in general at high risk for severe coronavirus disease (COVID-19) but dialysis-dependency (CKD5D) is poorly understood. We aimed to describe CKD5D patients in the different intervals of the pandemic and to evaluate pre-existing dialysis dependency as a potential risk factor for mortality. METHODS: In this multicentre cohort study, data from German study sites of the Lean European Open Survey on SARS-CoV-2-infected patients (LEOSS) were used. We multiply imputed missing data, performed subsequent analyses in each of the imputed data sets and pooled the results. Cases (CKD5D) and controls (CKD not requiring dialysis) were matched 1:1 by propensity-scoring. Effects on fatal outcome were calculated by multivariable logistic regression. RESULTS: The cohort consisted of 207 patients suffering from CKD5D and 964 potential controls. Multivariable regression of the whole cohort identified age (> 85 years adjusted odds ratio (aOR) 7.34, 95% CI 2.45-21.99), chronic heart failure (aOR 1.67, 95% CI 1.25-2.23), coronary artery disease (aOR 1.41, 95% CI 1.05-1.89) and active oncological disease (aOR 1.73, 95% CI 1.07-2.80) as risk factors for fatal outcome. Dialysis-dependency was not associated with a fatal outcome-neither in this analysis (aOR 1.08, 95% CI 0.75-1.54) nor in the conditional multivariable regression after matching (aOR 1.34, 95% CI 0.70-2.59). CONCLUSIONS: In the present multicentre German cohort, dialysis dependency is not linked to fatal outcome in SARS-CoV-2-infected CKD patients. However, the mortality rate of 26% demonstrates that CKD patients are an extreme vulnerable population, irrespective of pre-existing dialysis-dependency.

2.
BMC Med Res Methodol ; 22(1): 225, 2022 08 12.
Article in English | MEDLINE | ID: covidwho-2002110

ABSTRACT

BACKGROUND: The use of routine data will be essential in future healthcare research. Therefore, harmonizing procedure codes is a first step to facilitate this approach as international research endeavour. An example for the use of routine data on a large scope is the investigation of surgical site infections (SSI). Ongoing surveillance programs evaluate the incidence of SSI on a national or regional basis in a limited number of procedures. For example, analyses by the European Centre for Disease Prevention (ECDC) nine procedures and provides a mapping table for two coding systems (ICD9, National Healthcare Safety Network [NHSN]). However, indicator procedures do not reliably depict overall SSI epidemiology. Thus, a broader analysis of all surgical procedures is desirable. The need for manual translation of country specific procedures codes, however, impedes the use of routine data for such an analysis on an international level. This project aimed to create an international surgical procedure coding systems allowing for automatic translation and categorization of procedures documented in country-specific codes. METHODS: We included the existing surgical procedure coding systems of five European countries (France, Germany, Italy, Spain, and the United Kingdom [UK]). In an iterative process, country specific codes were grouped in ever more categories until each group represented a coherent unit based on method of surgery, interventions performed, extent and site of the surgical procedure. Next two ID specialist (arbitrated by a third in case of disagreement) independently assigned country-specific codes to the resulting categories. Finally, specialist from each surgical discipline reviewed these assignments for their respective field. RESULTS: A total number of 153 SALT (Staphylococcus aureus Surgical Site Infection Multinational Epidemiology in Europe) codes from 10 specialties were assigned to 15,432 surgical procedures. Almost 4000 (26%) procedure codes from the SALT coding system were classified as orthopaedic and trauma surgeries, thus this medical field represents the most diverse group within the SALT coding system, followed by abdominal surgical procedures with 2390 (15%) procedure codes. CONCLUSION: Mapping country-specific codes procedure codes onto to a limited number of coherent, internally and externally validated codes proofed feasible. The resultant SALT procedure code gives the opportunity to harmonize big data sets containing surgical procedures from international centres, and may simplify comparability of future international trial findings. TRIAL REGISTRATION: The study was registered at clinicaltrials.gov under NCT03353532 on November 27th, 2017.


Subject(s)
Clinical Coding , Surgical Procedures, Operative , Surgical Wound Infection , Europe/epidemiology , Humans , Incidence , Surgical Procedures, Operative/adverse effects , Surgical Wound Infection/epidemiology
3.
Med Klin Intensivmed Notfmed ; 117(7): 558-567, 2022 Oct.
Article in German | MEDLINE | ID: covidwho-1380415

ABSTRACT

BACKGROUND: The current COVID-19 pandemic, despite the availability of rapid tests and the start of the vaccination campaign, continues to pose major challenges to emergency departments (ED). Structured collection of demographic, clinical, as well as treatment-related data provides the basis for establishing evidence-based processes and treatment concepts. AIM OF THE WORK: To present the systematic collection of clinical parameters in patients with suspected COVID-19 in the Registry for COVID-19 in the Emergency Room (ReCovER) and descriptive presentation of the first 1000 patients. MATERIALS AND METHODS: Data from patients with suspected COVID-19, regardless of evidence of SARS-CoV­2 infection, are continuously entered into a web-based, anonymized registry in ED at six university hospitals. RESULTS: Between 19 May 2020 and 13 January 2021, 1000 patients were entered into the registry, of whom 594 patients (59.4%) were in the SARS-CoV­2 positive group (PG) and 406 patients (40.6%) were in the negative group (NG). Patients of the PG had significantly fewer pre-existing conditions and a significantly longer latency between symptom onset and presentation to the ED (median 5 vs. 3 days), were more likely to suffer from cough, myalgia, fatigue, and loss of smell/taste and had significantly higher oxygen requirements than NG patients. The rate of severe disease progression was significantly higher in the PG, and persistent symptoms were more common after discharge (11.1 vs. 4.6%). CONCLUSIONS: The multicenter collection of comprehensive clinical data on COVID-19 suspected cases in the ED allows analysis of aspects specific to the situation in Germany in particular. This is essential for a targeted review and adaptation of internationally published strategies.


Subject(s)
COVID-19 , Pandemics , COVID-19/epidemiology , Emergency Service, Hospital , Humans , Oxygen , Registries , SARS-CoV-2
4.
Infection ; 49(4): 725-737, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1182343

ABSTRACT

PURPOSE: The ongoing pandemic caused by the novel severe acute respiratory coronavirus 2 (SARS-CoV-2) has stressed health systems worldwide. Patients with chronic kidney disease (CKD) seem to be more prone to a severe course of coronavirus disease (COVID-19) due to comorbidities and an altered immune system. The study's aim was to identify factors predicting mortality among SARS-CoV-2-infected patients with CKD. METHODS: We analyzed 2817 SARS-CoV-2-infected patients enrolled in the Lean European Open Survey on SARS-CoV-2-infected patients and identified 426 patients with pre-existing CKD. Group comparisons were performed via Chi-squared test. Using univariate and multivariable logistic regression, predictive factors for mortality were identified. RESULTS: Comparative analyses to patients without CKD revealed a higher mortality (140/426, 32.9% versus 354/2391, 14.8%). Higher age could be confirmed as a demographic predictor for mortality in CKD patients (> 85 years compared to 15-65 years, adjusted odds ratio (aOR) 6.49, 95% CI 1.27-33.20, p = 0.025). We further identified markedly elevated lactate dehydrogenase (> 2 × upper limit of normal, aOR 23.21, 95% CI 3.66-147.11, p < 0.001), thrombocytopenia (< 120,000/µl, aOR 11.66, 95% CI 2.49-54.70, p = 0.002), anemia (Hb < 10 g/dl, aOR 3.21, 95% CI 1.17-8.82, p = 0.024), and C-reactive protein (≥ 30 mg/l, aOR 3.44, 95% CI 1.13-10.45, p = 0.029) as predictors, while renal replacement therapy was not related to mortality (aOR 1.15, 95% CI 0.68-1.93, p = 0.611). CONCLUSION: The identified predictors include routinely measured and universally available parameters. Their assessment might facilitate risk stratification in this highly vulnerable cohort as early as at initial medical evaluation for SARS-CoV-2.


Subject(s)
COVID-19/complications , COVID-19/mortality , Renal Insufficiency, Chronic/complications , SARS-CoV-2 , Adolescent , Adult , Aged, 80 and over , Cohort Studies , Comorbidity , Humans , Logistic Models , Middle Aged , Renal Insufficiency, Chronic/immunology , Risk Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL